Chomsky (2004): “Beyond Explanatory Adequacy” [BEA]

Theme: Eliminative minimalism is pushed further so as to conform to the SMT; phase theory, so far rather sketchy (i.e. in MI/DbP), is further consolidated on empirical, conceptual, and technical grounds (w.r.t. the technical system, no changes are made to the MI/DbP framework here, though).

Language design

a. The properties of the attained language L result from the interaction of three factors:\[104\]

(1) The three factors\[105\]

1. Individual experience (PLD), which selects among the options allowed by S\(_0\). ⇒ Descriptive adequacy
2. S\(_0\) itself, a product of evolution. ⇒ Explanatory adequacy
3. General properties of organic systems. ⇒ Beyond explanatory adequacy

b. “[N]atural selection can only function within a “channel” of options afforded by natural law, including properties of complex systems” ⇒ Factor 3: nature’s “Sinn für das Schone [sic]” (Haeckel)\[105\]

c. “[W]e can seek a level of explanation deeper than explanatory adequacy, asking not only what the properties of language are but also why they are that way”\[105\]

d. Initial conditions on language acquisition (explananda)\[106\]

i. Unexplained elements of S\(_0\) ⇒ empty under SMT (“too much too expect”)
ii. I(nterface)C(ondition) (the principled part of S\(_0\))
iii. General properties ⇒ external to S\(_0\)

Architecture

e. LA/Num, LEX, D(erivation), NS, PHON & SEM (representations), Φ & Σ (modules)\[106f\]

f. No internal tampering of LIs ⇒ no feature movement, no MLIs

g. Label ≈ head (for all it's worth)

h. Operation TRANSFER\[107\]

(2) TRANSFER hands D-NS over to F and to S.
⇒ Transfer to Φ = Spell-Out (S-O)

i. No more LF: “In this conception there is no LF: rather, the computation maps LA to <PHON, SEM> piece by piece, cyclically. There are, therefore, no LF properties and no interpretation of LF,
strictly speaking, though S and F interpret units that are part of something like LF in a noncyclic conception.”[107]

(3) SEM

\[\begin{align*}
\text{LEX} & \rightarrow \text{PHON}_1 \\
& \rightarrow \text{PHON}_2 \\
& \rightarrow \text{PHON}_3
\end{align*} \]

S–O applies to the phase domain (β in (7) below):

(4) \[\begin{align*}
[\text{CP} \cdot \text{C}^\circ \cdot [\text{TP} \cdot [\text{v}^\circ \cdot [\text{VP} \ldots]]]] \\
& \Rightarrow \text{S–O of VP, the domain of the phase head } v^\circ
\end{align*} \]

As S–O of VP happens upon the Merger of the next higher phase head C°, S–O may be rephrased as being triggered by that phase head. However, the topmost root CP phase is no complement/domain of any higher phase; thus, phases must (also) be able to be spelled out in full, without a trigger:

(5) \[\begin{align*}
[\text{CP} \cdot \text{C}^\circ \cdot [\text{TP} \cdot [\text{v}^\circ \cdot [\text{VP} \ldots]]]] \\
& \Rightarrow \text{S–O of root CP (untriggered/default)}
\end{align*} \]

In fn. 17, Chomsky reanimates an interesting, yet odd, proposition, to solve the Apex Paradox: Ross’s *Performativity Hypothesis* (also cf. Speas & Tenny 2003 for an explicit implementation in terms of *Speech Act* phrases):

(6) \[\begin{align*}
[\text{SAP} \cdot \text{SA}^\circ \cdot [\text{CP} \cdot \text{C}^\circ \cdot [\text{TP} \cdot [\text{v}^\circ \cdot [\text{VP} \ldots]]]]] \\
& \Rightarrow \text{S–O of root CP triggered by empty Speech Act head}
\end{align*} \]

k. *Phase theory*[108]

(7) a. PH = [α [H β]]
 b. α–H = edge

(8) PIC

At the phase ZP containing phase HP, the domain of H is not accessible to operations, but only the edge of HP.

l. *Duality of semantics*[110]

“[A]rgument structure and everything else” (Correlates with EM–IM[111]!!)

m. *Interface Conditions*[109f.]

(9) a. SM requires linearization by PHON.
 b. C–I requires duality of semantics by SEM.
n. Operations & relations[^110]

(10) Merge (freebie) ⇒ internal (IM), external (EM), ‘displacement’ (not considered an imperfection anymore!), CTM (≈ “null hypothesis”; no reconstruction; fn. 30: no meaningful distinction A/Å)

(11) Conditions on Merge[^109]
 a. Locality condition (‘closest’ under c-command)
 b. Extension condition

Covert movement (= IM) after S-O exists (contra LDA in MI & DbP)! Discuss…

(12) Copy[^111]
 K is a copy of L if K and L are identical except that K lacks the phonological features of L.

(13) Agree[^113]
 P-G under c-command, minimal search
 a. P & G must be complete[^115]
 b. Match under identity (non-distinctness)
 c. P & G must be active

(14) Move[^114]
 = Agree + Pied-Piping + Merge

(15) There are no head–to–Spec relations R(H, Spec) (m-command).[^109]

o. No s-selection[^111f.]

① Configurational θ-theory (à la Hale & Keyser)

② Burzio’s Generalization makes s-selectional θ-feature redundant

③ No m-command, no head–to–Spec relations (e.g. [Spec [v^PEA [...]]])

④ Acategorial roots: [vP v [v^SEE [vP the picture]]] (v identifies v^SEE as verbal; also gives a rationale to obligatory V-v movement) ⇒ Consider the structure [v^ARRIVE], from which we cannot predict whether it’s gonna be verbal or nominal (i.e. whether v is merged next, or n) ⇒ An s-selectional [IA] (internal argument) feature with subsequent merger of n predicts that [n arrival] needs an argument, contrary to fact (i.e. [vP n [v^ARRIVE [vA] [vP John]]]) ⇒ S-selection is configurational, evaluated at SEM–Σ

⇒ Derivations cannot be crash-proof (Comparison space all over again? Witness “Perhaps the condition should be that L yields an infinite variety of propositional configurations (CP or vP), and that each element of LEX enters into these.”[^112])

p. EPP/OCC[^113]

Optional [EPP] (= ‘edge-EPP’) = [OCC]: has “the ‘function’ of providing new interpretations” (non-teleological, under Reinhart’s/Fox’s economy output condition)
q. Spec–Head[113]

(16) Apparent Spec-H relations are in reality head-head relations involving minimal search (local c-command).

(17)

\[
\begin{array}{c}
\text{HP} \\
| \text{H}^\circ \rightarrow \text{ZP} \\
| \text{Z}^\circ \rightarrow \text{YP}
\end{array}
\rightarrow
\begin{array}{c}
\text{HP} \\
| \text{ZP} \rightarrow \text{H}^\prime \\
\rightarrow \text{t}_{\text{HP}} \rightarrow \text{H}^\circ
\end{array}
\]

(18) Spec–Head (prerequisite ‘feature strength’), H is morphologically richer than otherwise. But: McCloskey (2002) shows that the kind of Merge (IM or EM) determines the morphology of finite C° (in Modern Irish; examples are from pp. 185f.):

a. an fhilíocht \([\text{CP}\ a_{\text{OP}},\ EPP}\ chum \ si \ t_{\text{pro}}\].
 the poetry aL composed she ‘the poetry that she composed’

b. Creidim \([\text{CP}\ \text{gu-REM}}\ inis \ Sé bréag\].
 I-believe go-[past] tell he lie ‘I believe that he told a lie.’

(19) Agüero-Bautista (2001) cites examples from Indonesian where successive-cyclic wh-movement deletes an otherwise (i.e. in wh-in-situ) overt transitivity prefix men- (examples are from pp. 149f.)[116] [Strangely, Chomsky discusses this in the context of C–T below…]:

a. Sally \text{men-}cintai \text{siapa}
 Sally TRANS-loves who ‘Who does Sally love?’

b. Siapa yang Sally \text{Ø}-cintai \text{ti}
 who (FOC) Sally loves ‘Who does Sally love?’

NOTE: Starke (2001, 2004) actually argues for a specifier-less syntax. “What we mistook for specifiers are heads (in the sense that they provide the “label” for the merger they enter into). Put differently, there is no such thing as second merge in any theoretically relevant sense: every instance of merge has the properties of first merge.” (Starke 2004: 252). There are only head-complement relations. ex.

(1) I wonder \([\text{CP}\{\text{voh}\} [\text{DP}\{\text{voh}\} \text{wh-ich pasta} \text{C}^\circ[\text{voh}\} [\text{TP}\ \text{these boys ate t}_{\text{DP}}]\].

(2) I wonder \([\text{CP}\{\text{voh}\} [\text{DP}\{\text{voh}\} \text{wh-ich pasta} [\text{TP}\ \text{these boys ate t}_{\text{DP}}]\].

r. Uninterpretable features[113f]

[uF]’s are ‘imperfections’…
(20) a. D/N[\text{uCase}]
 b. T[\text{u}\phi] (subject agreement)
 c. v[\text{u}\phi] (object agreement)
 d. Prt\text{a}[\text{u}\text{Number, uGender}] (participial agreement)
 e. T\text{a}[\text{u}\text{Number, uGender}]

⇒ For Case-checking (under Agree), categories must be complete!
⇒ [\text{OCC}] no imperfection, is IC-related (output-oriented).

s. Expletives[114]

EXPL[\text{uF}] ([\text{uF}] = \text{Case}?) ⇒ If EXPL = head in a label-free phrase structure (à la Collins)

(21) Rel(EXPL,T) = H^\circ - H^\circ, not H^\circ - Spec or H^\circ - Spec ⇒ EM licit

\[\text{Diagram:} \quad \text{D}_{\text{EXPL}}[\text{uF}] \quad \text{T}^\circ[\text{OCC}]\]

t. Phase simultaneity[115]

Everything that happens within a phase (under the relevant definition) happens simultaneously (the representational residue).

u. C–T (anticipates Feature Inheritance, once again)[115]

C–T functions as a unit (T only shows true Tense and agreement if co-occurring with C)

(22) a. C–T[\text{u}\phi, T]
 b. T\text{def}[\text{u}\text{PERSON}]

v. Valuation[116]

Valuation/Interpretability Biconditional: “A feature F is uninterpretable iff F is unvalued.”

① Valuation under Agree
② Valuation ⇒ elimination
③ TRANSFER to Φ before elimination ([\text{uF}] may have phonetic reflex, e.g. Case)
⇒ Valuation as part of TRANSFER

w. EPP (the real one)[116]

T[\text{OCC}] – why on a non-phase head?

\textbf{NOTE:} In fn. 56, Chomsky gives an argument why [EPP] should still be assumed for (intermediate) defective T, contrary to what is assumed in MI, following Epstein & Seely (i.e. one-fell-swoop movement; example modified):

\textbf{Ex.} John seems to Susan [t\text{1} to appear to himself [t\text{2} to like Mary]]
⇒ \textit{John = himself}, despite [\textit{John…Susan…himself}] ⇒ t\text{1} binds \textit{himself}
x. IM in the Case-agreement system\[116\]

1. \((C–)T[μφ]\) \(\Rightarrow\) determines category of target
2. \(D/Н[μ\text{Case}]\) \(\Rightarrow\) moved element determined by active target
3. \(P[\text{EPP/OCC}]\) \(\Rightarrow\) determines availability of a position for Merge

y. Adjuncts & cyclicity\[117\]

Set Merge (= IM \(\alpha\) to \(\beta\)): \([\beta]\) \(\Rightarrow\) \([\alpha, \beta]\) (symmetrical, unordered)
Pair Merge (= Adjunction of \(\alpha\) to \(\beta\)): \([\beta]\) \(\Rightarrow\) \(<\alpha, \beta>\) (asymmetrical, ordered)

\(\Rightarrow\) Adjuncts are merged to their host on a separate (secondary) computational plane, preserving the syntactic properties of the host (e.g. w.r.t. c-command; cf. (23) below)

(23) [\(\text{wh}\) Which \([\alpha\ [\text{NP picture [\(\beta\ of \text{Bill}\] \[\text{Adjunct that John knew]\] did hek/m buy twh?}\ [2 Adjuncts!]]}\]

\(\Rightarrow\) (a) Cyclic Merge at the phase-level [preferred by SMT] vs. (b) Countercyclic late Merge at the root-level [preferred by binding facts in (23)]

a.

```
        whP
       / \  
     whP  Adjunct
      /   
which α   that John liked
     / 
    NP β
    /  
  picture  of Bill
```

b.

```
        CP
       /  
      CP Adjunct
     /   
    whP C' that John liked
   /   
which α did  
|   
|  
| NP β  
|   
| picture of Bill
```

Adjunction & the SMT\[118\]

(1) Why does it exist? (2) How does it work?

(1) SEM: Adjunction/Pair Merge is required by C–I to achieve predicate composition (in addition to the duality of semantics achieved by set Merge)

\(\Rightarrow\) SIMPL: optional operation converting \(<\alpha, \beta>\) to \([\alpha, \beta]\), part of TRANSFER

PHON: integration of \(\alpha\) (of \(<\alpha, \beta>\)) into primary plane
(24) In $<\alpha, \beta>$, α is spelled out where β is.

Move (as IM, not OCC-marking): Pied-Piping must be able to pick up a root-merged Adjunct$^{[120]}$

[Which Adjunct does Chomsky mean, β or the relative? Cf. (23) above. Active [uwh] of *β*?]

(25) [\[Which\[awh\] $[\alpha [\text{NP picture } [\beta $ of Bill]] [\text{Adjunct that John liked }]]$ did he buy t_{oh}?]

Extraposed Adjuncts (Fox & Nissenbaum 1999)$^{[120f.]}$

Adjuncts shouldn’t be extractable from NPs ⇒ there is no (true) Adjunct extraposition

(26) a. We saw [\text{NP a painting}] yesterday [Adjunct from the museum].

⇒ Fox & Nissenbaum: covert rightward QR of NP and postcyclical Merge with Adjunct

b. LF: We saw t_{np} yesterday [[\text{NP a painting}] [Adjunct from the museum]].

⇒ BEA: (i) Countercyclic late Merge; (ii) violation of (24); (iii) QR is to the right (covert movement doesn’t care about order) & feeds Φ; (iv) no Heavy-NP-Shift (NP remains in situ, PP is shifted)

c. We saw [\text{NP a painting}] yesterday, (that is,) a painting (\text{/one}) [Adjunct from the museum].

⇒ Qualifications/afterthoughts: a painting (the 2\text{nd}) is destressed & can undergo ellipsis (yielding (a))

Antecedent-contained deletion (ACD; Fox 2001)$^{[121f.]}$

(27) a. John [\text{\[\varepsilon \] likes [\text{\textit{VP tv [\text{\textit{NP every boy [\text{CP Mary does [\text{\textit{VP <lik\$es t\$>]]}]}]]}]}}]}.

⇒ Fox: antecedent of elided $<\ldots>$ is VP; parallelism requirement for ellipsis violated ⇒ Solution: QR of NP ⇒ But: CTM reintroduces problem, induces Condition C effect

b. John [\text{\[\varepsilon \] likes [\text{\textit{VP tv [\text{\textit{NP every boy]]]}]]}}] ⇒ Base-generation

c. [\text{\textit{CP C$^{\circ}$ [\textit{VP John [\textit{\varepsilon \] likes [\textit{\[\text{\textit{VP tv t\[\text{\textit{\textit{NP]]}]]}]]}}] [\text{\textit{NP every boy]]]}]]}]} [\text{\textit{NP every boy]]]}]. ⇒ Rightward QR

d. [\text{\textit{CP C$^{\circ}$ [\textit{VP John [\textit{\varepsilon \] likes [\textit{\[\text{\textit{VP tv t\[\text{\textit{\textit{NP]]}]]}]]}}] [\text{\textit{NP every boy] [\textit{CP Mary does <\text{\textit{\textit{lik\$es t\$>]]}]]}]}]]}]]. ⇒ Late Merge of (reduced) relative clause

⇒ BEA: Same problems as above.

e. John likes every boy (that is, more accurately . . .) every boy Mary likes.

z. Spell-Out$^{[122]}$

- Locus of Spell-Out; or: What are the relevant phases?

- S-O cannot be Spell-Out-as-you-Merge (as in Epstein & Seely’s system) ⇒ clashes with successive-cyclic movement

- Ideally, wait until the next Merger to determine whether movement is necessary

(28) $[\alpha, \{\sqrt{\text{SEE}}, \text{OB}\}]$, where $\alpha = v$ or n
⇒ If $\alpha = n$, OB receives inherent Case and is spelled out
⇒ If $\alpha = v$, V moves to v
⇒ If $\alpha = v_{\text{TRANS}}$, Agree($v$,OB), assignment of ACC to OB, OB only raises if v has [OCC]

- By SMT, S-O should apply as early as possible ⇒ this is possible at v, but mind you, derivation, under the PIC: ‘Spell-Out you sister!’

- Next phase should be CP (given Ā-movement, V-to-C movement, V-topicisation, which must all await C°)

- Phase simultaneity & phase-level evaluation gives rise to apparent countercyclicity (see DbP)

⇒ Wh-phrases shouldn’t be strandable in [Spec, vP], otherwise SU in [Spec, vP] couldn’t be detected (by T[EPP]); stranding in [Spec, CP] should be possible (McDaniels 1989 for German)

(29) Was glaubt Michael [CP was ich über Iwo $_$ $twas$ getratscht habe]?

⇒ OS must move on from [Spec, vP] (see DbP)

(30) [TP $__T$ [XP OB $__X$ [_P to_b [_v SU _v $__v$...to_b ...]]]]

- Semantic and phonological coherence and independence

 ☻ Strong phases: CP, transitive/experiencer vP (DP, PP) ⇒ have [EPP]-positions/escape hatch ⇒ “smallest constructions that qualify for Spell-Out”

 ☻ Weak phases: nontransitive vP (DP, PP) ⇒ don’t have [EPP]-positions

 ☻ Non-phases?